232/2

Paper 2

PHYSICS - (Theory)

Dec. 2022 - 2 hours

Name	Index Number
Candidate's Signature	Date

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of two Sections; A and B.
- (d) Answer all the questions in Sections A and B in the spaces provided.
- (e) All working must be clearly shown in the spaces provided in this booklet.
- (f) Non-programmable silent electronic calculators may be used.
- (g) This paper consists of 16 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.

For Examiner's Use Only

Section	Questions	Maximum Score	Candidate's Score
A	1-13	25	
1/1/1	14	09/	7 2618
	15	09	
В	16	13	462 K
Corn	17	12 75	6
	818	4 2012	
	Total Score	80	

SECTION A (25 marks)

Answer all the questions in this section in the spaces provided.

1. Figure 1 shows three cardboards A, B and C with holes placed between a source of light and an observer.

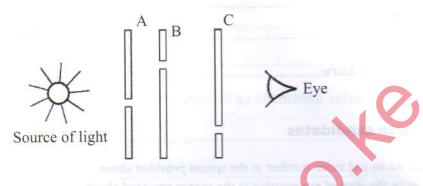


Figure 1

(2 marks)

loth. (1 mark)
(1 mark)

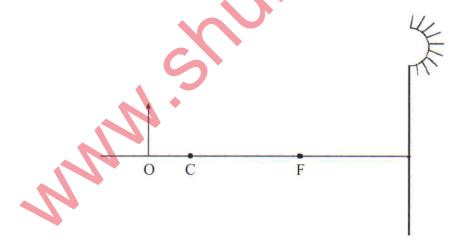
4. Figure 2 shows an incomplete circuit.

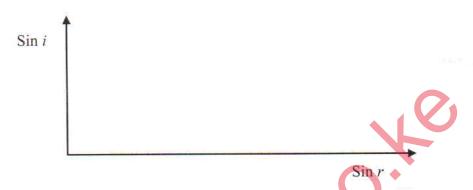
Figure 2

Complete the circuit by inserting a cell so that the current I flows in the direction shown when the switch S is closed. (1 mark)

b)5.	State the basic law of magnetism.	(1 mark

6. Figure 3 shows a vertical object O placed in front of a concave mirror whose principal focus is at F.




Figure 3

Draw a ray diagram to show how the image is formed.

(3 marks)

7.	State to	vo properties of soft iron that makes it suitable for use as the core of the electromagnet (2 marks)

8.	(a)	State one reason why sound travels faster at sea level than on high mountains. (1 mark)
		The switch S and the same of t
	(b)	State one condition necessary for two progressive waves to form a standing wave. (1 mark)
9.	time,	students stand 300 m from a wall. One bangs two pieces of wood together and at the same the other starts a stop watch. They hear an echo after 1.8 seconds. Determine the speed of d in air.
	(444444	

(b) State how the refractive index of the glass can be obtained from the graph. (1 mark)

11. Figure 4 shows a circuit consisting of two resistors of 4Ω and 8Ω , a cell and voltmeters V_1 and V_2 .

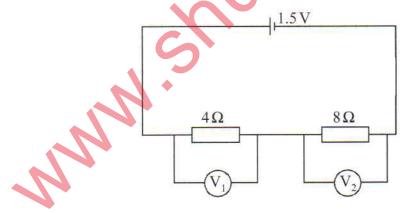


Figure 4

It is observed that voltmeter V_2 shows a higher reading than V_1 . Explain this observation. (2 marks)

12.	A heating element is rated 3 kW, 240 V. Determine the resistance of the element.	(3 marks)
13.	State two characteristics of images formed by diverging lenses.	(2 marks)

SECTION B (55 marks)

Answer all the questions in this section in the spaces provided.

14.	(a)	State Lenz's law of electromagnetic induction.	(1 mark)
	(b)	Figure 5 shows a magnet held near a stationery solenoid.	
) E-616		Solenoid Magnet N S	
		Figure 5	
		State what will be observed on the galvanometer when the:	
1		(i) north pole end is pushed into the solenoid	(1 mark)
	4		
		(ii) magnet is held stationary inside the solenoid	(1 mark)

	(iii)	north pole end is pulled out of the solenoid	(1 mark)

(c)	Expla solen	ain what would be observed if the North pole of the magnet is now move and at a higher speed.	ved into the (3 marks)
	***************************************	Anne de Samuel de Marie de	
	******	Dimenius	•••••
	600000		
(d)	State	e two causes of energy losses in a transformer.	(2 marks)

	2000000		

(iii)	Describe how the brightness of lamps L_1 , L_2 and L_3 compare when the	(2 marks)
	S_1 and S_2 are closed.	
		(2 marks)
(iv)	Explain the answer in 15(b)(iii).	(Z marks)
		(

16. (a) Figure 7 shows a circuit consisting of a cell in series with a galvanometer and two metal plates A and B.

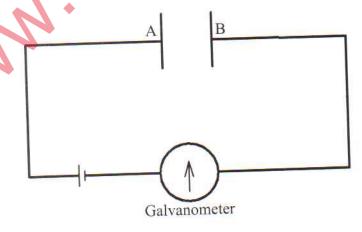


Figure 7

	(i)	It is observed that when a beam of UV radiation falls on plate B, the galvanometer deflects. Explain this observation. (3 marks)
	(ii)	Explain what would be observed on the galvanometer when a more intense beam of UV radiation is used. (2 marks)
		III T I LEMMON pacent 20
		Langela 274 x 10 x 1
(b)	(i)	State with a reason how the intensity of an X-ray beam can be increased in an X-ray tube. (2 marks)

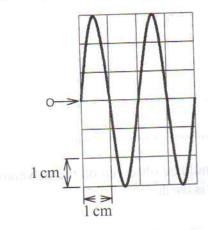


Figure 8

Given that the time base setting is 8.5 milliseconds per cm. Determine the:

	I.	wavelength of the AC signal	(1 mark)
	II.	frequency of the AC signal	(3 marks)
			<mark></mark>
(iii)	State	e the functions of the following parts of a Cathode Ray Oscillosco	pe:
N	I.	The grid	(1 mark)
	11.	The filament	(1 mark)

the number of half lives it will have undergone when the count is 12.5 (2 marks)

(c)	(i)	State the effect of doping on a semiconductor.	1 mark)
	(ii)	Explain how doping produces an n-type semiconductor from a pure semiconductor.	3 marks)
	(iii)	Figure 10 shows a circuit consisting of two galvanometers G_1 and G_2 , two diodes D, and D.	
		Figure 10 shows a circuit consisting switches S_1 and S_2 , a cell and two diodes D_1 and D_2 .	
		S_1 S_2 D_2	
		Figure 10	
		Explain what is observed when S_1 and S_2 are closed.	(4 marks)

18.	(a)	Explain the effect on resistance of a diode when the forward bias voltage is increased. (2 marks
		(2 marks
		······································
	(b)	Figure 11 shows a circuit consisting of a 12V battery, $1.5 \mathrm{k}\Omega$ resistor, a Light Dependent Resistor (LDR) and a lamp of negligible resistance. The circuit can be used as a light detector.
í		
ege -		$12V = \frac{1}{1}$
		LDR
		Lamp
		Figure 11
		(i) Explain what would be observed if the lighting conditions are changed from total darkness to bright light. (3 marks)

	(ii)	If the resistance of the LDR in bright light is $1 \times 10^3 \Omega$, determine the potential difference across the $1.5 \mathrm{k}\Omega$ resistor. (3 marks)
(c)	State	the function of a capacitor in rectification of an alternating voltage. (1 mark)
(d)	Figur	re 12 shows two capacitors of 2.5 μF and 10 μF in series with a 12 V battery.
×7		2.5 µF 10 µF
		Figure 12
	Dete	rmine the total charge stored by the capacitors. (3 marks)
	,,,,,,,	

